ورقة عمل في مادة الرياضيات (2)

الصف الثالث الثانوي العلمي (2019 - 2020)

أولاً) أجب عن الأسئلة الأربعة الآتية: (40 درجة لكل سؤال)

f النول: في الشكل المجاور C الخط البياني للتابع

f(D) أوجد D مجموعة تعريف التابع f ومستقره الفعلي (1

$$D_f = R$$

$$f(D) =]-\infty, 1]$$

 $\dot{f}(-2)$, f(0) أوجد (2

$$f(0) = 0$$
 , $\dot{f}(-2) = 0$

f للتابع C للتابع الخط البياني C للتابع (3

(1,0) (0,2) ونلاحظ أنه يمر بالنقطتين: y=mx+p معادلة المقارب المائل تحقق

$$m = \frac{2-0}{0-1} = -2$$

$$y = -2x + p$$

$$0 = -2 + p \qquad \implies p = 2$$

$$y = -2x + 2$$

 $-\infty$ عند xx' عند منطبق على y=0

x يحوي السؤال الثانى: عين في منشور الشور $\left(x-\frac{1}{\sqrt{x}}\right)^{10}$ الحد الذي يحوي

$$T_r = {10 \choose r} (x)^{10-r} \left(\frac{-1}{\sqrt{x}}\right)^r$$

$$= {10 \choose r} x^{10-r} (-1)^r (x)^{\frac{-1}{2}r} = {10 \choose r} (-1)^r x^{10-\frac{3}{2}r}$$

الحد الذي يحوي x:

$$x^{10-\frac{3}{2}r} = x$$
 $10 - \frac{3}{2}r = 1$
 $\frac{3}{2}r = 9 \implies \boxed{r=6}$
 $T_6 = \binom{10}{6}(-1)^6 x$
 $T_6 = \binom{10}{6} x$

 $e^{3x+1}+4e^{2x+1}-5e^{x+1}=0$:السؤال الثالث: حل المعادلة الآتية

$$e^{x+1}(e^{2x} + 4e^x - 5) = 0$$
 $e^{x+1}(e^x + 5)(e^x - 1) = 0$
 $e^x = 0$
 $e^x = 1 \implies x = 0$

.....

السوال الرابع: لتكن المتالية $(u_n)_{n\geq 1}$ المعرفة وفق: $u_n = \frac{1}{n} + \frac{1}{n+1} + \dots + \frac{1}{2n-1}$ $u_{n+1} = \frac{1}{n+1} + \frac{1}{n+2} + \dots + \frac{1}{2n-1} + \frac{1}{2n} + \frac{1}{2n+1}$ $u_{n+1} - u_n = \frac{1}{2n} + \frac{1}{2n+1} - \frac{1}{n}$ $= \frac{1-2}{2n} + \frac{1}{2n+1}$ $= \frac{-1}{2n} + \frac{1}{2n+1}$ $= \frac{-2n-1+2n}{(2n)(2n+1)}$ $= \frac{-1}{2n(2n+1)} < 0$

n=1 متناقصة تماماً بدءاً من الحد ذو الدليل

ثانياً) حل التمارين الأربعة الآتية: (0) درجة لكل تمرين) المعرفتين وفق: $(v_n)_{n\geq 0}$, $(u_n)_{n\geq 0}$, u_n المعرفتين وفق: $v_n=rac{1}{u_n}+1$, $\begin{cases} u_0=1\\ u_{n+1}=rac{u_n}{2u_n+1} \end{cases}$, $\begin{cases} u_n=u_n\\ u_{n+1}=u_n \end{cases}$, $\begin{cases} u_n=u_n\\ u_n=u_n \end{cases}$, $\begin{cases} u_n=u_n \end{cases}$,

n=0 نثبت صحة العلاقة من أجل •

محققة
$$L_1=u_0=1>0=L_2$$
 $u_n>0$: n غلاقة من أجل n .

 $u_{n+1} \stackrel{?}{>} 0$ نثبت صحة العلاقة من أجل n+1:

من الفرض:

محققة
$$u_{n+1} = \frac{u_n}{2u_n+1} > 0 \iff \begin{cases} u_n > 0 \\ 2u_n > 0 \implies 2u_n+1 > 0 \end{cases}$$

n بدلالة v_n بدلالة ما اثبت أن $(v_n)_{n\geq 0}$ بدلالة (2

$$\begin{aligned} v_{n+1} - v_n &= \frac{1}{u_{n+1}} + 1 - \frac{1}{u_n} - 1 \\ &= \frac{1}{u_{n+1}} - \frac{1}{u_n} = \frac{2u_n + 1}{u_n} - \frac{1}{u_n} \\ &= \frac{2u_n}{u_n} = 2 \implies \boxed{r = 2} \quad \text{where} \quad (v_n)_{n \ge 0} \\ \hline v_n &= 2 + 2n \end{aligned} \iff \begin{cases} v_0 &= \frac{1}{u_0} + 1 \\ v_0 &= 2 \end{cases} \iff v_n = v_0 + nr \end{aligned}$$

n استنتج u_n بدلالة (3

$$v_{n} = \frac{1}{u_{n}} + 1$$

$$v_{n} - 1 = \frac{1}{u_{n}}$$

$$u_{n} = \frac{1}{v_{n} - 1} = \frac{1}{2 + 2n - 1}$$

$$u_{n} = \frac{1}{1 + 2n}$$

السؤال السادس: التمرين الثانى: يحوي صندوق أربع بطاقات متماثلة مرقمة: 7, 4, 2, 1 نسحب من الصندوق في آن معاً ثلاث بطاقات:

1) ما عدد النتائج الممكنة لهذا السحب؟

$$\binom{4}{3} = 4$$

2) ما عدد النتائج الممكنة والتي يظهر فيها العددان 7, 2

$$\binom{1}{1}\binom{1}{1}\binom{2}{1} = 2$$

3) ما عدد النتائج الممكنة التي يكون مجموع أرقام البطاقات عدداً فردياً

$$\binom{2}{2}\binom{2}{1} = 2 \qquad \{\mathbf{j}, \mathbf{i}, \mathbf{j}\}$$

.....

(E): $Z^2-ig(\sqrt{3}+3iig)Z-2+2\sqrt{3}i=0$ السؤال السابع: التمرين الثالث: لتكن لدينا المعادلة $ig(\sqrt{3}-iig)^2$ عند العدد a

$$w^2 = \left(\sqrt{3} - i\right)^2 = 3 - 2\sqrt{3} i - 1 = 2 - 2\sqrt{3} i$$

b. حل المعادلة (E) .

$$\Delta = (\sqrt{3} + 3i)^{2} - 4(-2 + 2\sqrt{3} i)$$

$$= -6 + 6\sqrt{3} i + 8 - 8\sqrt{3} i$$

$$= 2 - 2\sqrt{3} i$$

$$\Delta = w^{2} \implies \sqrt{\Delta} = \sqrt{3} - i$$

$$-\sqrt{\Delta} = -\sqrt{3} + i$$

$$Z_{1} = \frac{-b + \sqrt{\Delta}}{2a} = \frac{\sqrt{3} + 3i + \sqrt{3} - i}{2}$$

$$= \frac{2\sqrt{3} + 2i}{2} = \sqrt{3} + i$$

$$Z_{2} = \frac{-b - \sqrt{\Delta}}{2a} = \frac{\sqrt{3} + 3i - \sqrt{3} + i}{2} = \frac{4i}{2} = 2i$$

$$= \frac{4i}{2} = 2i$$

$$= 2i$$

بالترتيب $c=\sqrt{3}+3i$, $b=\sqrt{3}+i$, a=2i بالترتيب $c=\sqrt{3}+3i$, $b=\sqrt{3}+i$, a=2i بالترتيب a=2i بالترتيب (1 مستنتج نوع المثلث a=1

$$a = 2i \implies A(0,2)$$

$$b = \sqrt{3} + i \implies B(\sqrt{3}, 1)$$

$$c = \sqrt{3} + 3i \implies C(\sqrt{3}, 3)$$

$$\frac{c - a}{b - a} = \frac{\sqrt{3} + 3i - 2i}{\sqrt{3} + i - 2i} = \frac{\sqrt{3} + i}{\sqrt{3} - i} \cdot \frac{\sqrt{3} + i}{\sqrt{3} + i}$$

$$= \frac{2 + 2\sqrt{3}i}{4} = \frac{1}{2} + \frac{\sqrt{3}}{2}i$$

$$= \cos\frac{\pi}{3} + i\sin\frac{\pi}{3}$$

$$\frac{c-a}{b-a} = e^{\frac{\pi}{3}i}$$

$$\arg\left(\frac{c-a}{b-a}\right) = \arg\left(e^{\frac{\pi}{3}i}\right)$$

$$\left(\overrightarrow{AB}, \overrightarrow{AC}\right) = \frac{\pi}{3}$$

$$\left(\overrightarrow{AB}, \overrightarrow{AC}\right) = \frac{\pi}{3}$$

$$\left(\frac{aC}{AB} = 1\right)$$

$$\left(\frac{aC}{AB} = 1\right)$$

$$AC = AB$$

$$\left(\frac{aC}{AB} = 1\right)$$

$$AC = AB$$

c=a+b تحقق أن (2

$$y$$
 محققة $l_2=2i+\sqrt{3}+i=\sqrt{3}+i=c$ محقق C , B , A النقاط C , B , A النقاط C معين. C بما أن C معين C بما أن C بما أن بما أ

$$c - a = \sqrt{3} + i$$
$$= b - 0$$

$$\overrightarrow{AC} = \overrightarrow{OB}$$

فالرباعي معين لأن أضلاعه متساوية الطول.

السؤال الثامن: التمرين الرابع: نريد تأليف لجنة مكونة من (مدير – نائب مدير – أمين سر) من مجموعة تضم خمسة أشخاص، بكم طريقة يمكن اختيار هذه اللجنة في الحالتين:

1) لا يوجد شروط

$$P_5^3 = 5 \times 4 \times 3 = 60$$

2) يوجد في المجموعة شخصان متخاصمان لا يجتمعان في اللجنة نفسها.

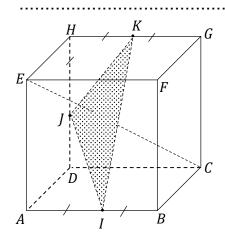
$$\{A, B, C, D, E\}$$
 نفترض أن B و A متخاصمان: $\{A, B, C, D, E\}$ نتيب الموالات الموقعة أن الموالات الموقعة أن الموالات الموقعة أن الموالات الموالد الموالد

الحالات المرفوضة:
$$(4, B, B)$$
 تتم بـ:

$$1 \times 1 \times 3 \times 6 = 18$$
 طریقة

$$n=1$$
عدد طرق اختيار اللجنة: الحالات المرفوضة $-$ الحالات الكلية

$$n = 60 - 18 = 42$$



ثالثاً) حل المسألتين الآتيتين: (100 درجة لكل مسألة)

السؤال التاسع: المسألة الأولى: ABCDEFGH مكعب فيه:

[HG] , [HD] , [AB] ا و J و J القطع المستقيمة K

ولنختر المعلم المتجانس $(A; \overrightarrow{AB}, \overrightarrow{AD}, \overrightarrow{AE})$ والمطلوب:

1) عين إحداثيات النقاط التي تمثل رؤوس المكعب

K , J , I النقاط وإحداثيات النقاط

$$A(0,0,0)$$
 , $C(1,1,0)$, $B(1,0,0)$, $F(1,0,1)$

$$D(0,1,0)$$
 , $G(1,1,1)$, $E(0,0,1)$, $H(0,1,1)$

$$I\left(\frac{1}{2},0,0\right)$$
 AB aircoe I

$$J\left(0,1,\frac{1}{2}\right)$$
 HD aircoin J

$$K\left(\frac{1}{2},1,1\right)$$
 HG منتصف K

$$\overrightarrow{IJ}\left(\frac{1}{2},1,\frac{1}{2}\right)$$
 , $\overrightarrow{IK}\left(0,1,1\right)$, $\overrightarrow{JK}\left(\frac{1}{2},0,\frac{1}{2}\right)$

2) أثبت أن المثلث IJK قائم

$$\|\overrightarrow{IJ}\| = \sqrt{\frac{3}{2}}$$
 , $\|\overrightarrow{IK}\| = \sqrt{2}$, $\|\overrightarrow{JK}\| = \frac{1}{\sqrt{2}}$

حسب عكس فيثاغورث:

$$\|\overrightarrow{IK}\|^2 \stackrel{?}{=} \|\overrightarrow{IJ}\|^2 + \|\overrightarrow{JK}\|^2$$

$$2 \stackrel{?}{=} \frac{3}{2} + \frac{1}{2} = 2$$

J في IJK قائم في

[EC] يمثل المستوي المحوري للقطعة المستقيمة (IJK)

$$\overrightarrow{CI}\left(\frac{-1}{2}, -1, 0\right) \to \|\overrightarrow{CI}\| = \sqrt{\frac{1}{4}} + 1 = \frac{\sqrt{5}}{2}$$

$$\overrightarrow{EI}\left(\frac{1}{2}, 0, -1\right) \to \|\overrightarrow{EI}\| = \frac{\sqrt{5}}{2}$$

$$\overrightarrow{CI} = \overrightarrow{EI}$$

$$\overrightarrow{CJ}\left(-1, 0, \frac{1}{2}\right) \to \|\overrightarrow{CJ}\| = \frac{\sqrt{5}}{2}$$

$$\overrightarrow{EJ}\left(0, 1, \frac{-1}{2}\right) \to \|\overrightarrow{EJ}\| = \frac{\sqrt{5}}{2}$$

$$\overrightarrow{CJ} = \overrightarrow{EJ}$$

$$\overrightarrow{CK}\left(\frac{-1}{2}, 0, 1\right) \to \|\overrightarrow{CK}\| = \frac{\sqrt{5}}{2}$$

$$\overrightarrow{EK}\left(\frac{1}{2}, 1, 0\right) \to \|\overrightarrow{EK}\| = \frac{\sqrt{5}}{2}$$

$$\overrightarrow{CK} = \overrightarrow{EK}$$

[EC] يمثل مستوي محوري للقطعة المستقيمة إذاً

4) اكتب معادلة الكرة التي تقبل [AB] قطراً لها

AB معادلة الكرة التي تقبل AB قطراً لها، مركز الكرة هو منتصف AB أي هو AB نصف قطر الكرة هي منتصف AB

$$R=\dfrac{\|\overrightarrow{AB}\|}{2}$$
 , $I\left(\dfrac{1}{2},0,0
ight)$ $\overrightarrow{AB}(1,0,0)$, $R=\dfrac{1}{2}$
$$\left(x-\dfrac{1}{2}\right)^2+y^2+z^2=\dfrac{1}{4}$$
 :معادلة الكرة:

.....

السؤال العاشر: المسألة الثانية: بفرض C_f الخط البياني للتابع f المعرف على $R\setminus\{1\}$ وفق:

$$f(x) = \frac{x}{x-1} + e^{\frac{1}{x-1}}$$

C ادرس تغیرات التابع f ونظم جدولاً بها واستنتج کل مقارب للخط (1

 $R \setminus \{1\}$ معرف واشتقاقي على f

$$\lim_{x \to -\infty} f(x) = 1 + 1 = 2$$

 $-\infty$ مقارب أفقي يوازي xx' عند y=2

$$\lim_{x \to +\infty} f(x) = 1 + 1 = 2$$

 $+\infty$ عند xx' عند y=2

$$\lim_{x \to 1^{-}} f(x) = \frac{1}{0^{-}} + e^{\frac{1}{0^{-}}} = -\infty$$

مقارب شاقولي يوازي yy' و x=1 مقارب شاقولي يوازي ما يوازي ما

$$\lim_{x \to 1^+} f(x) = \frac{1}{0^+} + e^{\frac{1}{0^+}} = +\infty$$

مقارب شاقولی یوازی $\gamma \gamma \gamma$ و کم یقع علی یمین المقارب $\chi=1$

$$f'(x) = \frac{-1}{(x-1)^2} + \frac{-1}{(x-1)^2} \cdot e^{\frac{1}{x-1}} < 0$$

x	-∞	1 +∞
f'(x)	_	
f(x)	2	+∞ → 2

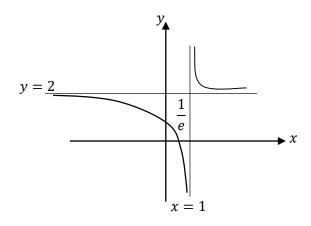
$R \setminus \{1\}$ حلاً وحيداً على f(x) = 0 اثبت أن للمعادلة f(x) = 0

$$I_1$$
 مستمر ومتناقص تماماً على f المعادلة f على f مستمر ومتناقص تماماً على ما مستمر ومتناقص f مستمر ومتناقص f مستمر ومتناقص المعادلة f مستمر ومتناقص f مستمر ومتناقص المعادلة f مناؤل مناؤل ومتناقص المعادلة f مناؤل ومتناقص المعادلة f

$$I_2$$
 في $f(x)=0$ مستمر ومتناقص تماماً على $\{I_2\}$ لا يوجد حلول للمعادلة $f(x)=0$ في $f(x)=0$ في $0 \notin f(I_2)=0$ في $0 \notin f(I_2)=0$ في المعادلة $0 \notin f(I_2)=0$

للمعادلة f(x)=0 حسب مبر هنات القيمة الوسطى

C_f ارسم كل مقارب للخط C ثم ارسم كل



$$x=0: f(0)=\frac{1}{e}$$

 $f(x) = \lambda$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

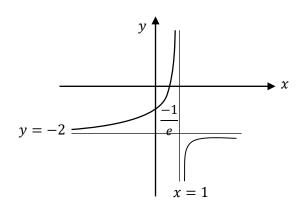
$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

$$(1 - \lambda)x + (x - 1)e^{\frac{1}{x-1}} + \lambda = 0$$

ر حديد
$$f(x)=\lambda$$
 للمعادلة $\lambda\in]-\infty$ حل وحيد $\lambda=2$ المعادلة مستحيلة الحل $\lambda=2$ للمعادلة حل وحيد $\lambda=2$

$$f_1(x)=rac{x}{1-x}-e^{rac{1}{x-1}}$$
 المعرف بالعلاقة f_1 المعرف بالعلاقة f_1 المعرف بالعلاقة $f_1(x)=rac{x}{1-x}-e^{rac{1}{x-1}}=rac{x}{-(x-1)}-e^{rac{1}{x-1}}= -\left(rac{x}{x-1}+e^{rac{1}{x-1}}
ight)=-f(x)$

 $\chi\chi'$ نظیر C بالنسبة لمحور C_1



.....

انتهت الأسئلة